CSUMX™ DIAMOND CASING SHOE
Ultramatrix™ Product

BOART LONGYEAR™
CSUMX™
The CSUMX casing shoe is designed for all exploration and geo-technical casing applications. The ability to drill faster with high penetration rates and outperform existing shoe technology in a wide range of ground formations makes the CSUMX ideal for customers seeking a cost-effective alternative to their current shoe selection.

UMX™
Boart Longyear’s extensive drilling experience and history of engineering are the drivers behind the incredibly innovative UMX impregnated casing shoe. By combining patented technologies with customer collaboration, Boart Longyear’s engineers have designed the highest performing casing shoes available.

Ultramatrix™
CSUMX impregnated casing shoes feature Boart Longyear’s patented Ultramatrix. Ultramatrix technology enables the use of large synthetic diamonds with an innovative formula, increasing penetration through various ground formations while providing longer shoe life. This optimization couples the high penetration capability with longer shoe life and allows the CSUMX to cut easily from one ground formation to another.

Leading Technology
The CSUMX also features the unique Razorcut™ design on the face of the bit. This speeds exposure of the diamonds and enables the shoe to cut even in the softest overburden. The arrangement of the Twin-Taper™ waterways dramatically improves surface flushing, which keeps the shoe face clear and reinforces the inner-diameter of the shoe.

For more information on the CSUMX™ Diamond Bit, scan with a QR code reader on your smart phone.
1 **UMX™ CROWN**
Patented technology enables the use of large, synthetic diamonds, increasing penetration through changing ground conditions and provides longer bit life.

2 **RAZORCUT™ FACE DESIGN**
Patented design is ready to cut right “out of the box” and improves tracking and balance in the hole.

3 **TWIN-TAPER™ WINDOW**
Dramatically improves flushing, forcing debris through the windows while keeping the bit face clear and reinforcing the inner-diameter.